
Journal ()f the European Ceramic Society 10 (1992) 461-472 

A General Strength Distribution 
Brittle Materials 

Function for 

Robert Danzer 
Christian-Doppler-Laboratorium fib Hochleistungskeramik am Institut fiir Metallkunde und Werkstoffpriifung, 
Montanuniversitiit Leoben, A-8700 Leoben, Austria 

(Received 16 December 1991; accepted 28 February 1992) 

Abstract 

A new strength distribution function for  brittle 
materials is developed, which applies to materials with 
an inhomogeneous distribution o f  flaws. 

The probability o f  failure is 

F = 1 -- exp [ -  (N~,~)] 

where ( N~,~) is the mean number o f  critical dejects in 
the specimen o f  size S. The well-known Weibull 
statistics are a special case o f  the new statisticsjor a 
special flaw size distribution. 

Several aspects o f  the relationships between the 
Weibull statistics and material structure are analysed 
in the light ~)[ the new formalism. Examples are 
materials with several different flaw distributions or 
rising crack resistance. The conditions necessary to 
get a Weibull distribution as well as the reasons why 
Weibull distributions are observed so o[ten in the daily 
material testing practice are discussed. Finally, the 
minimum number o f  test specimens necessary to 
guarantee a reliabh, prediction o f  the component's 
reliabili O' using Weibull's theory is given. This number 
depends on the necessary reliability as well as on the 
loaded (effective) volumes o1 the test specimens and 
components, respectively. 

Es wurde eine neue Festigkeitsverteilungsfunktion fiir 
sprgde Werkstoffe entwickelt, die Werkstoffe mit 
einer inhomogenen Fehlerverteilung beschreibt. 

Die Bruchwahrscheinlichkeit ergibt sich aus 

F = 1 - exp [--  (N¢,~)] 

Hierbei ist (Nc,~) die mittlere Anzahl kritischer 
Defekte in einer Probe der Grby3e S. Die bekannte 
Weibullstatistik ist ein Sonderfall der neuen Statistik 
und zwar./~ir eine besondere FehlergrOflenverteilung. 

Verschiedene Aspekte der Beziehungen zwischen 
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der Weibullstatistik und der Materialstruktur werden 
aus der Sicht des neuen Formalismus analysiert. 
Beispiele hierzu bilden Werkstoffe mit mehreren 
verschiedenen Fehlerverteilungen oder mit zunehmen- 
dem Riflwiderstand. Die erjorderlichen Bedingungen, 
die zu einer Weibull-Verteilung fiihren, werden 
diskutiert. Auflerdem werden die Ursachen, weshalb 
die Weibull-Verteilung so hiiufig in der tiiglichen 
Praxis der Werkstoffprfffung beobachtet wird, be- 
sprochen. Schliefllich wird die minimale Probenanzahl 
angegeben, die fiir eine Gewiihrleistung einer sicheren 
Vorhersage der Zuverliissigkeit der Komponente 
nach der Weibull-Theorie erforderlich ist. Diese 
Anzahl hiingt sowohl yon der erforderlichen Zu- 
verffissigkeit als" auch yon dem ~ffektiv belasteten 
(e[/ektiven) Volumen der Probe bzw, der Komponente 
ab. 

Une nouvelle fonction de distribution de la rOsistance 
mOcanique pour des matOriaux cassant a OtO d~vel- 
opp~;e, qui s'applique aux matkriaux avec une 
distribution inhomogOne des dOfauts. 

La probability; de d~jhuts est 

F =  1 - exp [ -  (Nc.~> ] 

or) ( Nc,~) est le nombre de d~fauts critiques moyen 
dans l'Ochantillon de taille S. La statistique bien 
connue de Weibull est un cas particulier de la nouvelle 
statistique pour une distribution particulikre de 
dkfauts. 

Plusiers aspects de la relation entre la statistique 
Weibull et la structure du matOriau sont analysOs gtla 
lumiOre de ce nouveau formalisme. Des exemples sont 
des matOriaux avec plusieurs distributions de dOfauts 
ou une rksistance croissante gt la fissure. Les conditions 
n~cessaires pour avoir une distribution Weibull, aussi 
bien que les raisons pour lesquelles des distributions 
Weibull sont observOes si souvent dans la pratique 
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courante des tests sur les matkriaux, sont discutbes. 
Finalement on a donnb le nombre minimum d'bchan- 
tillons d'essais nkcessaires pour garantir une bonne 
mesure de la fiabilitb du composant en utilisant la 
thkorie de Weibull. Ce nombre dkpend de la fiabilitk 
nbcessaire ainsi que des volumes en charge (effective) 
des bchantillons d'essais et des composants. 

1 Introduction 

In brittle materials, e.g. ceramics, fracture usually 
starts from defects. The material strength then 
depends on the strength of the major defect in the 
material, which varies from specimen to specimen. 
Therefore the strength of brittle materials is not 
given by a simple number. For a set of identical 
specimens, a strength distribution function is 
required which describes the probability of failure 
depending on the stress state and amplitude. The 
design of components made from brittle materials is 
based on the knowledge of this distribution func- 
tion, which can only be measured on a large set of 
test specimens. This is expensive and will hardly be 
done in the daily design practice. 

The experimental efforts necessary to find the 
proper strength distribution can be reduced to a 
large extent if its mathematical structure can be 
deduced from physical principles. On the basis of a 
known functional context between the stress state 
and the probability of failure, some material 
parameters instead of the whole distribution curve 
have to be measured. In the past, several distribution 
functions of strength were derived using prob- 
abilistic arguments) -1° It has always been assumed 
in these papers that the defects are homogeneously 
distributed within the specimen. This is hardly the 
case in real materials. In this paper, a more general 
distribution function of strength for brittle materials 
with an inhomogeneous density of defects is 
deduced. It can be shown that the other distribution 
functions, e.g. the well-known Weibull statistics, ~'2 
are special cases of this new function. The new 
fracture statistics are used to describe several typical 
situations occurring in specimens made of brittle 
materials. 

2 Fracture Statistics of Brittle Materials 

Brittle fracture designates a group of fracture 
processes which are neither preceded nor accom- 
panied by high degree of plastic deformation. 
Fracture in brittle materials originates at defects. 

These are regions where stresses are concentrated by 
the microstructure, e.g. defects can be crack-like 
flaws or flaws which, under the action of a stress, can 
transform into them. A defect is called critical if the 
tensile stresses in these regions are high enough to 
destroy the cohesion of the material. The minimum 
size of the critical defect depends on the local 
material's structure, the kind of defect (and the corres- 
ponding local fracture criterion), on the shape, orien- 
tation of the defect, and on the macroscopic stress 
state at the site of the defect. Since only one defect 
can actually be the nucleation site of brittle fracture 
in any given sample, there is a need for more complex 
statistics which yield both sample size and stress 
dependencies, which is the main point of this paper. 
(At a high stress amplitude more than one defect 
may be weaker than the applied stress; those defects 
are potentially critical. In an actual loading situation, 
however, the load is increased up to the analysed 
amplitude. Fracture occurs when the tensile stress 
amplitude at the site of the weakest defect exceeds 
the strength of the weakest defect. This is the actually 
critical defect.) 

In general, the size of a critical defect correlates 
with the amplitude of the stress state (the higher the 
defect size, the lower the stress amplitude (strength)). 
The microscopic fracture criterion (as well as the 
proper definition of the size of a critical defect 
depending on the stress amplitude) may be different 
for different kinds of flaws. This problem will not be 
tackled in this paper. It is assumed that such a 
definition exists (an example will be given later) and 
that, for a given stress state and in a given volume 
element, a density of critical defects can be defined. 
In reliable components, this density is low and it 
has to be measured in a large set of specimens 
(components). The density of (potentially and 
actually) critical defects is equal to the mean number 
(taken over this set of specimens) of critical defects 
divided by the size of the volume element. The den- 
sity of critical defects can vary within the specimen. 
This is reflected by the fact that critical areas exist 
in most components. Reasons for such an inhomo- 
geneity are an inhomogeneous stress state, an inho- 
mogeneous microstructure or an inhomogeneous 
defect distribution. 

In the following a general fracture statistical 
relationship between the density of critical defects 
and the reliability of a specimen is derived. In a later 
section, it is demonstrated on several examples how 
this relationship can be used to obtain the fracture 
statistics (strength distribution) of a set of specimens. 

In order to derive the probability of failure, it is 
assumed that: 
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(a) The density of defects (defined in a volume 
element which is large enough to contain 
several defects) is low enough so that 
interaction between flaws can be neglected; 

(b) a brittle material fails when the weakest 
defect fails, like a chain breaking when the 
weakest link fails (weakest link hypothesis); 
and 

(c) a density of critical defects, Pc, can be defined 
for a set of  microscopically identical 
specimens. 

Under the action of a given stress state, a specimen 
will fail if it contains at least one critical defect 
(according to assumption (b)) and it will not fail if it 
does not contain any critical defect. Therefore, the 
reliability (probability of not failing), R, is equal to 
the probability of finding no critical defect within the 
specimen. For obvious reasons, the probability of 
failure, E is given by 

F = I - R  

Let us consider the probability of finding a critical 
volume defect (the probability of failure) in a small 
volume element d V'. It is proportional to this 
volume and to the local density of critical volume 
defects, Pc.v(V') (which exists according to assump- 
tion (c)). In a specimen with volume V, this 
probability is a continuous and monotonically 
increasing function of V according to the integral 

vOC,v(V')dV'= (N~,v(V)) (1) 

and F is the mean number (taken over a large set of 
microscopically identical specimens) of critical 
volume defects in the volume V: 

F = F[<Nc,v(V))] 

Because R -- 1 - E the reliability is a continuous and 
monotonically decreasing function of (Nc,v(V)) and 
of V,, therefore 

R = R[(Nc.v(V)) ] 

This expression is abbreviated by the symbol R(V). 
The later derivation is guided by the ideas which 
Freudenthal 4 has developed for materials with a 
homogeneous defect density. 

Let R(V+ V~) be the probability of finding no 
critical volume defect within the volume V+ 1/1. 
According to assumption (a), the reliability of 
finding no critical volume defect in V does not 
depend on the reliability of finding no critical 
volume defect in V~ and it holds that 

R(V + 1/1) = R(V)R(V~) (2) 

The theorem of Leibniz-Newton is used to calculate 
the total differential of the mean number of critical 
volume defects in V (eqn (1)): 

,3, 

The change of reliability with a change of the mean 
number of critical volume defects in V is 

dR(V+ V~) dR(V+ 1/1) dR(V) 
- - R ( V 0  

d(Nc,v(V)) Pc,v(V)dV pc,v(V)dV 

Dividing by eqn (2) gives 

d in  R(V+ V~) d in  R(V) 

(4) 

(51 

in R(V) = co(No,v(V)) + c I (7) 

where eqn (1) has been used and cl is an integration 
constant. For V-)0, (Nc,v(V))--*0 and R(0) has to 
be unity, giving c l - -0  and 

R(V) = exp [co(Nc,v(V))] 

For small volume elements, the probability of failure 
has to be equal to the probability of finding a critical 
defect in the volume. Therefore, c o = -  1 and 

R(V) = exp [-- (No,v( V))] (8) 

This is the reliability function for brittle specimens 
containing volume defects. No special assumptions 
have been made concerning the loading, the kind of 
defects and the fracture criterion; their influence is 
incorporated in the definition of the 'critical' volume 
defects. It is possible that the specimens contain 
several populations of volume defects which may fail 
due to different reasons, and that the density of 
critical volume defects is inhomogeneous. 

An analogous calculation can be done for surface 
defects (density: pc,a(A); area: A; mean number of 
critical surface defects in a specimen: (Nc,,(A))) and 
for edge defects (density: p~a(L); edge length: L; 
mean number of critical edge defects in a specimen: 
(Nca(L))). Both kinds of  defects are frequently 
produced during machining of specimens. If the 
probabilities of failure due to different defect 

and 

m 

pc,v(V)dV pc,v(V)dV 

The left-hand side of eqn (5) depends on the mean 
number of critical volume defects in V~, but the right- 
hand side does not. Equation (5) is valid for all values 
of 1/1, and therefore both sides have to be a constant 
value (called Co) not depending on the mean number 
of critical volume defects in the volume I/1. Now eqn 
(5) can easily be integrated by separation of the 
variables 

d In R(V) = copc,dV) dV (6) 
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populat ions are independent,  the total reliability of  
the specimen S is the product  of  the reliabilities, 
Ri, corresponding to the individual defect popula-  
tions, i: 

Rs=I~Ii R i = e x p [ -  2 (N~,i)]  (9) 

i 

and 

respectively 

R s = exp [ -  (No,s> ] (10) 

Fs = 1 - exp [ - (No,s)] (11) 

The subscript S refers to size and geometry of the 
specimen, (Nc,s) to the mean value (taken over a 
set of  microscopically identical specimens loaded in 
an identical way) of  finding any critical defect in a 
specimen (volume, surface and edge defects or any 
other defects): 

fvPov(V')dV'+fAPos( ')dA'+fLPo,(C)dC 
= <No,v) + <No.a> + (Ne,,> = (No.s> (12) 

Equat ion (11) is a very general strength distri- 
bution function which can be used to describe a wide 
variety of  problems. The exponential  law is a 
consequence of  purely statistical arguments  im- 
plicating no special size distribution of  defects. Even 
for a high mean value, (N¢,s) >> 1, there is a (small) 
probability of finding specimens which do not 
contain any critical defect (e.g. for (N¢.s) = 5, R = 
exp ( -5)~-0 .007;  one of  148 specimens will survive 
in this case). For  a small mean value, (N~,s) << 1, the 
probabili ty of  failure is approximately equal to the 
mean number  of  critical defects per specimen, 
therefore it holds that  

The three assumpt ions  made  previously are 
necessary to link the probability of  finding (not 
finding) a critical defect with the probability of  
failure (survival). 

Assumpt ion  (a) is self-explanatory. In materials 
with a linear elastic behaviour (this is generally the 
case if brittle fracture occurs), it works well if the 
mean distance between defects is large compared  to 
the diameter of  the defects. 

The weakest link hypothesis (assumption (b)) 
describes total brittle fracture of  the material; it is a 
worst-case model. Breakdown in this assumption 
may arise if the elastic strain energy released by 
crack propagat ion  starting from the defect is too low 
to cause the separation of  the specimen into two or 
more pieces. This is favoured by several situations. 
Some cases have been observed in ceramics, where 
the fracture toughness increases with crack propa- 
gation due to interactions between crack planes (this 
is called R-curve behaviour; see Section 5) or where 
the fracture toughness varies spatially. Another  
example is loading with an inhomogeneous  stress 
state, where the released strain energy decreases 
during crack propagat ion;  this happens, for 
example, in the case of  thermal shock loading. 

Assumpt ion  (c) has been discussed at the begin- 
ning of  this section. The density of  critical defects is 
defined to be a mean taken over a large set of  
specimens. In all cases of  technical importance,  this 
density is very low in structural materials. Let it be 
assumed that  106 identical specimens with volume V 
are loaded with the same stress state and that  10 a 
specimens fail. Then, roughly speaking, the mean 
value of  critical defects within one specimen (volume 
V) loaded at this stress state is 103/106 = 10 -3. The 
density of  critical defects in a part of  this specimen 
(volume) is 10-3/AV. 

F s = 1 - exp ( -  (No,s>) ~- (Nc,s) 

(e.g. for (No,s) = 10-", Fs ~- 10-4). 
For  a given stress ampli tude the mean value 

defined in eqn (1) is monotonical ly  increasing with 
the specimen size. The  same is true for the 
probabili ty of failure. For  fracture mechanical  
reasons, the strength of  a large defect is smaller than 
the strength of  a small defect. Therefore the number  
of  critical defects increases if the stress ampli tude 
increases. The same holds for the mean number  of  
critical defects and, using eqn (11), for the proba- 
bility of  failure. Therefore eqn (11) describes the two 
most  significant features of  the statistical nature of  
strength of  brittle materials: the probability of  
failure increases with increasing specimen size and 
with increasing load amplitude. 

3 Application to Weibull's Theory 

3.1 Weibull statistics 
Weibull evaluated fracture statistics for materials 
with a homogeneous  (constant) defect density. ''2 For  
a homogeneous  uniaxial stress state, he showed that  
for materials containing volume defects the prob- 
ability of  failure is 

F =  1 - exp [-n(o-) V] (13) 

n(o') being a material  function assumed to be 
independent  f rom the posit ion in the specimen and 
the direction of  stress o'.' Weibull ment ioned that  
n(o-) can generally be any monotonical ly  increasing 
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function of stress. He showed that the function 

n(a) = V~-o \ ~ j  (14) 

can be used to describe a wide variety of problems. 2 
V o is an arbitrary normalizing volume (normally set 
to 1 mm3), a' u is a lower bond of  strength, and a;  and 

r m' are material parameters. At a - a ' ,  = a o and for 
V= V o, F =  1 - e x p ( - 1 ) = 0 . 6 3 .  

The corresponding distribution function of 
strength is very flexible. It can be nicely fitted to 
many measured strength distributions of  brittle 
materials. It can be shown, however, that using, for 
example, the Monte Carlo simulation technique 
described in Ref. 11, the lower bond of s t rength--  
especially in small data sets used in daily materials 
testing practice--is  not a stable parameter.  It 
depends to a large extent on the subset of  specimens 
selected to measure the distribution function and not 
on its real value. Therefore, this lower bond is often 
set to zero (a', =0), giving the widely used two- 
parameter  form of the Weibull distribution: 

(If for a given set of  tested specimens a three- 
parameter  Weibull distribution function has been 
selected to fit the data in an optimal manner,  the 
corresponding fit parameters ~; and m' are different 
from the parameters ~r o and m of  the best fitted two- 
parameter  Weibull distribution. It holds generally 
that in' _< m.) 

ao is the characteristic strength of the material and 
m is a material parameter  (called the Weibull 
parameter). These formulae can easily be deduced 
from eqn (11). This will be done in the following 
sections. 

3.1.1 Homogeneous distribution o f  volume defects 
and homogeneous stress state 
For a homogeneous distribution of  volume defects 
and for a homogeneous stress state, the density of 
critical defects is also homogeneously distributed 
within the material. Therefore the expectation value 

(No.s) = (Uc.v) = &.v V 

is the density of critical volume defects. In general, 
this density depends on the applied stress amplitude. 
Inserting this expression in eqn (11) gives eqn (13), 
with n(a)= P~.v. To summarize, the following ad- 
ditional assumptions are necessary to obtain eqn 
(13): 

(d) The defects are volume defects; 

(e) they are homogeneously distributed within 
the material; and 

(f) the stress state is homogeneous. 

3.1.2 Homogeneous distribution o f  volume dejects 
and inhomogeneous uniaxial stress state 
For an inhomogeneous uniaxial stress state (e.g. in a 
bent beam), and using assumptions (a) to (f), the 
corresponding strength distribution is ~ 

The parameter  ~ designates a stress amplitude which 
characterizes the applied stress state. For  example, in 
the case of  a bent beam, ~ can be defined to be the 
maximum outer fibre stress. The integration may 
only be made over regions with tensile stress 
components.  This implies that 

(g) compressive stresses are not damaging. 

In most brittle materials, the compressive strength is 
more than five times higher than the tensile strength. 
Therefore assumption (g) is a fair approximation as 
long as the compressive stress amplitudes in a loaded 
structure are smaller or approximately equal to the 
tensile stress amplitudes. 

3.1.3 Weibull statistics and deject size distribution 
To work out an analytical form for the material 
function n(a), additional information concerning the 
shape, orientation and size distribution of the defects 
and on the microscopic fracture criterion has to be 
supplied. Again it is assumed for simplicity that the 
stress state is homogeneous and uniaxial. 

To get the two-parameter Weibull distribution, 
eqn (15), it is additionally assumed that: 

(h) The volume defects behave as flat cracks 
which can be characterized by a single 
variable (crack length a); 

(i) they are oriented perpendicular  to the 
applied stress direction; 

(j) the frequency distribution density of defect 
lengths (mean number of defects per volume 
and defect length) is given by an inverse 
power law: 

g(a) = Aa -r (17) 

where A and r are material constants; and 
that 

(k) the Griffith failure criterion applies: 

/¢= >-/qc 08) 

where K is the stress intensity factor, Y the 
geometry factor of  the defect and K~c the 
fracture toughness. 
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(These assumptions are more  restrictive than 
necessary; they are selected to make the calculation 
easy.) 

Assumption (h) is only used to make the calcu- 
lations easier, but it holds true in many cases. 
Important  classes of  flaws are spherical inclusions or 
pores remaining after the sintering. In the material 
around these flaws, there often exists a system of  
radial cracks. Then there can always be found a 
radial crack which is approximately perpendicular 
to any given stress direction, and assumptions (h) 
and (i) can be applied. Geometry  factors for this 
crack configuration can be found in Refs 12 and 13. 

For a given stress amplitude the critical defect size, 
ac, depends, in general, on the nature of  the defect, its 
shape and orientation, and on the fracture toughness 
of  the material. Then more refined defect models 
have to be used which account for all these 
influences. In many cases, the proper choice of  the 
defect model  does not  change the analytical 
structure of  the Weibull distribution but the 
definition of  the characteristic strength, O-o .14 This 
point will be briefly discussed in the next subsection. 

The Griffith criterion (assumption (k); the sum of  
elastic energy released and the work done by crack 
propagation is higher than the energy needed to 
create new fracture surfaces) describes the onset of  
brittle fracture. It can easily be applied to brittle 
materials with a well-defined fracture toughness, 
e.g. to fine-grained non-reinforced ceramics. If 
the energy necessary to create new fracture sur- 
faces increases with crack propagation (R-curve 
behaviour; this happens, for example, in trans- 
formation-toughened ceramics 1s-is or in coarse- 
grained ceramics19-22), the onset of  brittle fracture 
need not cause catastrophic failure because stable 
crack growth may occur. In this case assumption (k) 
has to be replaced by a more refined failure criterion. 
This case will be discussed in Section 5. 

With these assumptions ((h), (i), (k)) it can be 
shown that all cracks equal to or larger than ac are 
critical: 

\bTj 
To calculate the density of  critical defects 

n(~) = pc,v(~) = g(a) da (20) 

the frequency distribution density of  the defect 
length, g(a), has to be known. This distribution 
function can either be measured (e.g. by metallo- 
graphic (ceramographic) methods or using non- 
destructive testing procedures) or determined by 

" D  

g 

Qc 
crack length, o 

Fig. 1. Schematic drawing of the frequency distribution of the 
defect size; the right-hand side of the curve can be approximated 
by eqn (17). The shaded area is the density of critical defects 

(eqn (20)). 

= P c , v ( V ,  = 

with 

theoretical calculations. Measurements have only 
rarely been done. Poloniecki & Wilshaw measured 
this distribution curve of  surface cracks in glass. 23 
They determined the curve which is qualitatively 
shown in Fig. 1. It should be mentioned that the 
right-hand side of  this curve can be described by an 
inverse power law. Sometimes only this side of the 
distribution curve can be observed. Wolf et al. 24 
measured the size distribution of the radii of  
sintering pores in SiC in the radius interval between 
2 and 200/~m. They obtained an inverse power law 
distribution function (corresponding to eqn (17)). 24 
There also exist other cases where the frequency 
distribution density of  the defect length has a 
different size dependency. If, for example, the defects 
are inclusions in interdentritic spaces, or if they are 
foreign powder particles found in a sieved powder 
compact, there must exist an upper limit for the size 
and, in this case, the density function can certainly 
not be approximated by an inverse power law. 

Finally, it can be concluded that assumption (j) 
selects a special form of  frequency distribution 
density of the defect length, which often, but not in 
all cases, can be observed in brittle materials. 

Inserting eqn (17) into eqn (20), integrating and 
using eqn (19) gives 

r -  1 (a¢)1 - '  - V o (21) 

m = 2 ( r -  1) (22) 

~o Y \ VoA / (23) 

where Vo is an arbitrary scaling parameter, often set 
to 1 mm 3. (It is assumed that the geometry factor, Y, 
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is independent of crack length, a. This is approxi- 
mately true for small cracks (a/W<< 1; W: typical 
specimen dimension). This is generally the case in 
brittle materials.) 

Inserting eqn (21) into eqn (13) gives the two- 
parameter  Weibull distribution, eqn (15). As also 
stated in earlier papers, 6'2s the Weibull modulus m 
only depends on the material parameter  r (eqn (22)), 
which describes the size dependency of the relative 
frequency of  the crack lengths. 

For an inhomogeneous uniaxial stress state, eqn 
(15) can be transformed into an integral. This gives 
eqn (16), with n(o-)= (1/Vo)(a/~ro)". 

3.1.4 Cracks with generally distributed crack plane 
orientations; uniaxial and general stress state 
For a crack of given size, the crack orientation has a 
large influence on the risk of  failure. In a uniaxial 
stress state, a crack which is perpendicular to the 
stress direction may be critical, depending on the 
local stress amplitude and on crack size. However, if 
the crack of the same size loaded with the same stress 
amplitude lies parallel to the stress direction, it is 
harmless, because its stress intensity factor is zero (if 
only mode I loading is concerned). For generally 
orientated cracks two problems have to be handled. 

Firstly, normal and shear stresses are acting in the 
crack plane, causing modes I, II and III loading of  
the crack. Therefore a mixed mode microscopic 
fracture criterion has to be worked out, even if the 
macroscopic stress state is uniaxial. Using this 
criterion an equivalent stress o- e can be defined, 
which depends on the normal and on the shear stress 
components.  Then the stress, a, in the Weibull 
distribution, eqn (15), can be replaced by the 
equivalent stress, G. In the context of  a fracture 
mechanical concept of  mixed mode loading, 26'27 
several different failure criteria have been pro- 
posed. 2s-31 None of them is shown to describe the 
material's behaviour in full detail. Therefore, this 
problem is still a subject of  intensive research. A 
good overview of this problem is given by Thiemeier 
in his thesis. 14 

Secondly, the critical crack length depends not 
only on the equivalent stress ampli tude (and 
therefore on the fracture criterion) but also on the 
orientation of  the crack plane. Therefore not all 
cracks (as in the example shown in Section 3.1.3) but 
only a fraction of the cracks of  a given size can be 
critical. For each equivalent stress amplitude and 
each crack length, a region of  space angles can be 
found, in which the cracks are critical. If  the 
microscopic failure criterion is selected, this problem 
can easily be solved. An example is given in Ref. 6. If 

the other conditions mentioned before are not 
changed, the corresponding fracture statistics are 
again Weibull-type statistics (analogous to eqns (15) 
and (16)). The significance of the Weibull modulus 
does not change but the parameter  ao has to be 
redefined in order to account for the influence of the 
crack plane orientations and of the mixed mode 
loading of the cracks. 

3.1.5 Conditions for  obtaining a Weibull-type 
strength distribution Jhnction 
The strength of  brittle materials is always of  the 
Weibull type (eqn (15)), if the defects are sparsely and 
homogeneously distributed in the volume, and if the 
density of  critical defects, p .... is proportional to 
some power of the stress amplitude. This density 
depends on the frequency distribution density of 
defect lengths and on the stress dependence of the 
critical defect length (see eqn (21)). The latter has to 
be some power of  the stress amplitude, which 
approximately holds true in most cases of  brittle 
fracture. For  example, if the Griffith fracture 
criterion applies, a c oc a - z  (eqn (19)). Therefore, the 
most important assumption which has to be satisfied 
in order to obtain a Weibull distribution of strength 
is that the frequency distribution density of defect 
length is an inverse power function of the defect 
length: 

g(a) = Aa -r 

This often (at least in a limited interval of  crack 
lengths) but not in all cases occurs in brittle 
materials. Therefore the Weibull distribution is a 
special case of a more general distribution function 
(eqn (8)) for a special type of frequency distribution 
of  the defect length. 

The question remains why Weibull distributions 
are measured so often in daily materials testing 
practice. In this practice the set of  specimens used to 
measure the strength distribution is in general very 
small. The number of  test specimens fractured is 
between 10 and 30 in most cases; in rare cases it is up 
to 100. Let us consider the example of a data set with 
100 specimens and a material with a typical Weibull 
modulus of m = 10. Then the probability of  failure 
(approximately given by (n-0"5)/N, where n is the 
ranking number  of the test specimen) of the weakest 
specimen is 0"995, and that of  the strongest specimen 
is 0"005. Using eqn (15) and for tensile specimens 
with the volume V= Vo, the strength of the strongest 
specimen is about twice the strength of the weakest 
specimen. (From 

F =  1 - exp [-(V/Vo)(a/ao)" ] 



468 Rober t  Danzer  

Table 1. Size ratio of the weakest and the strongest defect of a 
material with Weibull modulus m in a set of data containing N 

specimens 

m ac.w/a¢, s 

N 

10 30 100 

10 2"3 3-0 4'0 
15 1.7 2"1 2"5 
20 1"5 1"7 2"0 

it follows that at V= V 0 

(l/m) In In [1/(1 - F)] = In (a/ao) 

This formula can be evaluated for the weakest (w) 
and for the strongest (s) specimen of the data set. The 
difference of both equations gives 

(1/m){ln In [1/(1 - Fw)] - In In [1/(1 - Fs)]} 
= In (%/a~).) 

Using eqn (19), the size of the critical defect in the 
weakest specimen is about four times the size of the 
critical defect in the strongest specimen. Table 1 lists 
the size ratios for data sets containing a different 
number of test specimens, N, and materials with two 
different Weibull moduli (m = 10 is typical for many 
ceramic materials, m = 2 0  corresponds to high- 
quality ceramics). For small data sets, this ratio is 
always small. In bending specimens made from 
ceramic materials, for example, the size of a typical 
fracture origin is 50/~m and the sizes of the smallest 
and biggest fracture origins are about 30 and 80/~m 
respectively. So the size interval of the critical defects 
is relatively small. A Weibull distribution function is 
observed if in this size interval the density of critical 
defects follows a power law of a. Due to the inherent 
scatter of the data it is always possible to fit a power 
law function to a small set of data points within a 
small size interval, and therefore a Weibull distri- 
bution of strength is so often observed. 

3.1.6 Limitations of  data extrapolation 
In general, the volume of test specimens is different 
from that of components, and the same holds for the 
stress state. Applying Weibull statistics for compo- 
nents, it is helpful to introduce the 'effective volume' 
in order to take these differences into account. The 
effective volume, V~fr, of a test specimen (component) 
is the volume corresponding to the gauge section of a 
hypothetical tensile specimen loaded at the max- 
imum equivalent stress amplitude, ae,ma x, occurring 
in the component. Its size is selected in such a way 

that the reliability of the hypothetical tensile 
specimen and of the component are equal: 

\ae,maxJ Jv \aoJ 

It depends on the Weibull modulus and on the stress 
state. If large stress gradients occur, the effective 
volume can be much smaller than the real volume. In 
the case of three-point bend testing of typical 
ceramics, V~ff/V~ 1/1000 and, for four-point bend 
testing, Vaf/V~l/lO0. 2s'32 In the case of tensile 
testing, however, V~ff/V can be 1/3 and even more. 
(Bars with rectangular cross-section (as commonly 
used for bend testing) were glued into steel fixtures 
and tensile tested. The material necessary for 
gripping was minimized and Fell/V> 1/3 (Danzer, 
R., unpublished).) 

The following arguments to discuss the limit- 
ations of data extrapolation are guided by the idea 
that the size of the critical defect in the weakest 
specimen (it is the largest defect) should be equal to 
the size of the critical defect in the weakest 
component. Then the range of experience (concern- 
ing the size distribution of defects and strength 
distribution of specimens) gained from the set of test 
specimens embraces the data necessary to predict the 
component behaviour. 

When the Weibull statistics are used to predict the 
reliability of components, a high component relia- 
bility, Rcor~ p (e.g. Rcomp = 0.999 99, 0"999 999 or even 
higher; the corresponding probability of failure is 
Fcomp= 10 -s ,  10 -6 or lower), is required in most 
cases. Using Weibull's theory, this can only be done 
in a reliable way if the fracture origins in the test 
specimens and components belong to the same flaw 
population, and if their size distribution follows a 
power law (eqn (17)). Of course, the defect density 
distribution has to be equal in specimens and 
components. This can be guaranteed in the best way 
if the specimens are cut out of the components. 

Let us at first consider the problem when the 
effective volume of the specimens equals that of the 
components. If the set of test specimens used to 
measure the Weibull distribution contains N speci- 
mens, the range of 'measured' reliabilities (as 
mentioned earlier, an estimate for the specimen's 
reliability is R =  1-(n-O'5) /N,  where n is the 
ranking number of test specimen) goes from 
( 2 N -  1)/2N(for n = 1) to 1/2N(for n = N). The latter 
value corresponds to the specimen containing the 
largest defect. In the case of equal effective volumes, 
the size of the largest defects in both sets is equal, if 
the number of test specimens is Nr, t. = 1/(2Fcomp ) = 
1/(1 -Rcomp ). In this case, N =  Nmi n is the minimum 
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number of  test specimens used to 'measure' the 
required reliability Rcomp. For example, for Rcomp = 

0-99999 (F~omp= 10-5), the minimum number  of 
specimens to measure this reliability value is 5 × 104. 

So far no extrapolation has been made, but it is 
possible to use specimens with a geometry and a 
loading state different to those of  the components  as 
long as the effective volume remains approximately 
the same. The calculation is based on the two- 
parameter  Weibull distribution. Therefore, the argu- 
ment remains true as long as the set of  N =  
1/(2F~omp ) specimens is well described by the two- 
parameter  Weibull distribution. 

To account for the different effective volumes of 
specimens and components,  the number of necessary 
test specimens has to be multiplied by the ratio of the 
effective volumes of the components  and speci- 
mens. 33 Then the number of necessary specimens is 

Nmin = ( geff . . . .  p/Veff,spec)/(2Fcomp) 

If large stress gradients occur, which is the case in 
many components,  the effective volume is much 
smaller than the real volume. Then, for example, 
using the tensile testing technique ment ioned 
previously, the effective volume of  the specimens 
may be equal to or even much greater than that of  
the components. This may also happen if specimens 
were cut out of  the components. Continuing the 
above example it is assumed that geff,spec / ~eff,comp = 
10. This reduces the number of  necessary specimens 
to 5000. 

Until now no real extrapolations have been 
performed, because the description of both the 
specimens and the components  is based on the 
knowledge of  the defect size distribution within the 
same size interval. If it is assumed that the size 
distribution does not change spontaneously beyond 
the largest measured defect size, the data can be 
extrapolated and the number of  necessary speci- 
mens can be further reduced, say, by an empirically 
selected factor of  1/e. The parameter  e is the 
extrapolation span. Table 2 lists the ratio of the 

T a b l e  2. Size ratio of the weakest defect, a . . . . . . .  p, corre- 
sponding to the required component  reliability and of the 

weakest defect, a ..... oec, in a set of  test specimens 

(l c,w,comp/ac,w.spec 

~X 

rn 3 5 10 20 50 

10 1.25 1-38 1.58 1"82 2"19 
15 1-16 1"24 1.36 1.49 1"68 
20 1"12 1"17 1"26 1"35 1"49 

largest defect corresponding to the required compo- 
nents' reliability (ac,w,comp) and of the largest defect 
(a¢ .... ,e¢) expected in a set of  test specimens, 
depending on the extrapolation span and on the 
Weibull modulus, m. The calculation is based on the 
two-parameter Weibull distribution. 

If it is assumed that the expected defect size in the 
components should not  be much larger than the 
observed defect size in test specimens, this table is a 
basis for the definition of the tolerable extrapolation 
span. In the author's opinion it should be tolerable 
to have components  containing defects up to 50% 
larger than those observed in test specimens, giving 
ac,w,comp/ae,w,spee = 1"5. In the framework of  the two- 
parameter  Weibull theory these assumptions yield, 
for the maximal tolerable extrapolation span, ~max ~" 
1-5m/2. 

Use of these assumptions gives 

N m i n _  Veff . . . .  p 1 
V .,spe  2 Fcomp 

1 Weft comp 1 
- -  ' (25) 
2(15) m/2 Ve.,sp.  (1 -- Roomp) 

In the above example, and for rn = 15 (~ = 20), the 
number of  necessary test specimens is reduced to 
about 250. 

In line with these arguments, the Weibull statistics 
can be used to calculate the component  reliability if, 
within a set of  Nmi n test specimens, no indication of  
any deviation from Weibull's theory can be found. 

4 Volume and Surface Defects 

In brittle materials surface cracks are often pro- 
duced during machining of  the specimens. The two 
(or more) different defect populations (volume 
defects and surface defects) occur. The corre- 
sponding probability of  failure (see eqns (9) and (12)) 
is 

F s = 1 - e x p  [ - (N¢ .v )  - (N¢,s) ] (26) 

The subscripts v and s refer to the volume and the 
surface respectively. If, for each of  both defect 
populations, the conditions for obtaining a Weibull 
distr ibution (see Section 3.1.5) are valid, this 
equation can be worked out to give 2s 

F s = 1 - -exp ---~o-o \aO,v / -~-ooxao,s/ 

where S is the surface under load, So is a normalizing 
surface normally set to l mm 3, and aO,s is the 
characteristic strength for a material containing 
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only surface defects. This type of  strength distri- 
bution has recently been observed in zirconia 
ceramics. 34 If  the surface finish is insufficient (this is 
often the case with brittle materials), (No, s >> (Nc , v ) ,  

the strength is dominated by surface cracks. 

5 Increase of Fracture Toughness during Crack 
Extension 

A fracture toughness which increases as the crack 
grows has been observed in several materials, e.g. 
in transformation-toughened zirconia 15- ~8 and in 
coarse-grained aluminaJ 9-a2 This increase is caused 
by the interaction of the crack surfaces and depends, 
therefore, on the actual crack and specimen geom- 
etry. The crack resistance,/~ (/~: energy absorbed by 
the newly created cracked area), is strongly related to 
the fracture toughness, K~c: 

E ' R : K ? ¢  

E' = E in a plane stress state and E' = El(1 - v 2) in a 
plane strain state, where E is the elastic modulus and 
v is the Poisson ratio. A typical R-curve is shown in 
Fig. 2, where the crack resistance, R, is plotted over 
the crack advance, Aa (solid line). In the linear elastic 
limit, the energy released by the crack advance, G, is 

G -- K 2 / E  ' = a 2 y 2 a / E '  

For small cracks, Y is independent of the crack 
length, giving a linear relationship between the 
released energy and the crack length. For  a crack of  
length ag + A a  (a i is the crack length before crack 
advance occurs), this is shown in Fig. 3 (dashed lines). 
The slope of  the lines (62yz/E ') depends on the 
applied stress amplitude, a. For  a small stress 
amplitude, the released energy is too small to 
balance the energy necessary to create the crack 
advance (line 1). If the stress is increased (line 2), the 
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Fig. 2. Schematic sketch of an R-curve (energy absorbed per 
newly fractured area over crack extension) for a coarse-grained 
ceramic material. The length 1 = Ro/R' is a measure of the length 

of the interaction zone. 
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Fig. 3. Crack advance occurs if the released strain energy, G 
(dashed lines; the ordering number indicates an increasing stress 

amplitude), exceeds the crack resistance,/?. 

crack may grow in a stable manner  but it stops when 
the toughness increases a n d / ?  exceeds G. Unstable 
crack growth is only possible if the stress is increased 
further to the state shown in line 3, where, for each 
crack advance, the released energy is greater than or 
equal to the absorbed energy. This gives, in addition 
to eqn (18) (G >/~), the condition 

dG dR 
> (28) 

da - da 

Ro is defined as (see Fig. 2) the minimum crack 
resistance (at Aa = 0) and R'(0) is its slope at Aa = 0. 
The length l - -Ro/R'  is a measure of  the size of  the 
interaction zone. The initial crack sizes (before stable 
crack growth occurs) can be divided into three 
classes: 

I-  , ai = between I and nol (29) 
[ > n o /  

no is a number of  the order of  10. In the first case, the 
initial cracks are so small that the stresses necessary 
to initiate crack propagation are very high. Stable 
crack growth is not possible and running cracks do 
not arrest. The crack resistance is R =  Ro and the 
ideas of  Section 3.1 remain valid. This will occur in 
many transformation-toughened ceramics, where 
the interaction zone can reach several millimetres 
and the size of  natural flaws is one or two orders of  
magnitude smaller. 

For  cracks in the second size interval, the crack 
resistance as well as the crack size increase before 
catastrophic failure occurs. The critical crack size 
does not depend on some power of  the applied stress 
(a more complex relationship exists), and the 
corresponding probability of  failure is not a Weibull 
distribution (eqn (15)). In general, the increase of  
crack resistance causes a systematic decrease of  the 
scatter of  the strength data. In the extreme, the 
strength can approximately be independent of  the 
size of  the fracture initiating defects. 
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In the third size interval, the cracks are much 
larger than the size of  the interaction zone. A very 
small crack growth can cause an increase in the crack 
resistance to its upper plateau value, Rma x. In a good 
approximation, the material behaves as a material 
with a flat crack resistance curve and R = Rma X. In 
this case, the arguments of  Section 3.1 remain valid 
as well. 

Summarizing the above arguments, it can be said 
that for materials with a rising crack resistance 
curve, a Weibull distribution can only be expected in 
distinct stress intervals (corresponding to the crack 
size intervals), and extrapolations based on the 
Weibull distribution may give wrong results. More 
general statistics of  strength based on the failure 
criterion already discussed (eqn (28)) and on the R- 
curve have to be used. 

6 Final Remarks 

The new fracture statistics, eqn (11), form a very 
simple and general function, which applies to many 
situations occurring in brittle materials. It correlates 
the probabili ty of  failure with the expectation value 
of  finding critical defects in a specimen (component). 
Because of  its simplicity, it opens a simple way to win 
insight into the fracture statistical problems. To 
apply these statistics to material problems the 
expectation value of  finding critical defects has to be 
evaluated in terms of  the applied stress state. Doing 
this, micromechanical models concerning the frac- 
ture criterion and depending on the kind of  flaw, its 
size, size distribution and on the flaw orientation 
have to be formulated. This opens a wide field for 
future research. 

The well-known Weibull statistics are a special 
case of  the new statistics and, therefore, need not be 
applied to each material. F rom experience it is 
known that many sets of  test data can be described 
by Weibull statistics. This happens due to their 
flexibility in data fitting, the inherent scatter of  data 
and the small size (interpolation range) of  most data 
sets. Weibull distributions measured in such a way 
can be used for data interpolations but should only 
be used with care for data extrapolations. Doing 
this, the minimum number  of  test specimens 
necessary to guarantee a component  reliability can 
be defined, depending on the ratio of  the effective 
volumes of  components  and test specimens on the 
one hand and on the required reliability of  the 
component  on the other. A large effective volume of  
the test specimens reduces the necessary number  of  
test specimens. This is a strong argument for the 

introduction of  tensile testing in the testing practice 
of  ceramics. Such deviations are expected to occur, 
for example, in materials where critical surface and 
volume defects are active or in materials with a rising 
crack resistance curve. 
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